Rearrangement of 1-Amino- and 1-Alkylamino-pyrazoles to 5-Aminopyrazoles

Dionisia Sanz, Rosa M^a Claramunt[•] and José Elguero

Departamento de Química Orgánica, Facultad de Ciencias, U.N.E.D. Ciudad Universitaria, 28040 Madrid, Spain

Loreto Salazar and Modesta Espada

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain

Rearrangement of 1-aminopyrazole and 1-alkylaminopyrazoles into the corresponding 5-aminopyrazoles has been achieved in 48% aqueous hydrobromic acid. The reaction, occurring through a ring opening–ring closure mechanism, constitutes a new and unambiguous procedure for the preparation of 1-substituted 5-aminopyrazoles. The products have been identified on the basis of ¹H and ¹³C n.m.r. spectroscopic results and comparison with authentic samples.

Because of our interest in the biological properties of heterocyclic derivatives containing an 1-adamantyl group, we attempted to synthesize 1-(1-adamantylamino)pyrazole (1c; $\mathbf{R} = \mathbf{Ad}$) starting from 1-aminopyrazole (1a; $\mathbf{R} = \mathbf{H}$) and 1-bromoadamantane, according to the experimental conditions previously used.¹ Instead of derivative (1c) we obtained a complex mixture † of compounds from which the following were isolated and identified: 1-(1-adamantyl)-3-aminopyrazole (2) (15%), 1,4-bis(1-adamantyl)-3-aminopyrazole (3) (30%), and 1-(1-adamantyl)-5-aminopyrazole (4) (25%) (Scheme 1).

The structures of these new derivatives were confirmed by ¹H (200 MHz) and ¹³C (50 MHz) n.m.r. spectra, all compounds showing chemical shifts in accordance with the calculated ones from 1-(1-adamantyl)pyrazole² considering the substituent chemical shifts effects of amino³ and 1-adamantyl groups⁴ (Table).

To explain these results, we assumed that owing to protonation of 1-aminopyrazole (1a) by traces of hydrobromic acid, this compound rearranges to the 3(5)-amino derivative (5a)(Scheme 2); subsequent adamantylation on both nitrogens and on the 4-carbon atom then gave (2), (3), and (4).

In order to check this explanation, 1-aminopyrazole (1a) and 1-methylaminopyrazole (1b) were heated with 48% aqueous hydrogen bromide at 140 °C for 14 h to afford 3(5)-aminopyrazole (5a)³ (33%) and 1-methyl-5-aminopyrazole (5b)³ (70%), respectively. Compound (1a) was prepared from

pyrazole and hydroxylamine-O-sulphonic acid.⁵ A two-step procedure involving formylation of (1a) with 98% formic acid to give (1d; R = CHO) and reduction of this last compound with LiAlH₄ gave 1-methylaminopyrazole (1b) in 50% overall yield.

The mechanism proposed in Scheme 2 accounts for a reaction without precedent in pyrazole chemistry and involves a β -hydrazinoacrylonitrile intermediate. This kind of compound

[†] Typical Procedure.—A mixture of 1-aminopyrazole (0.83 g, 10 mmol) and 1-bromoadamantane (2.15 g, 10 mmol) was heated at 160–170 °C for 2 h. After cooling, the crude reaction mixture was chromatographed on a silica gel column (70–230 mesh, ASTM) with chloroform–ethanol (9:1, v/v) to give in the following elution order: compound (3), m.p.; 204–206 °C (Found: C, 78.45; H, 9.2; N, 11.95, C₂₃H₃₃N₃ requires C, 78.58; H, 9.46; N, 11.95%); compound (2)-HBr, m.p. 225–226 °C (Found: C, 52.05; H, 6.7; N, 14.1. C₁₃H₂₀BrN₃ requires C, 52.35; H, 6.95; N, 13.95. C₁₃H₂₀BrN₃ requires C, 52.35; H, 6.71; N, 14.09%); and compound (4)-HBr, m.p. 244–245 °C (Found: C, 52.65; H, 6.95; N, 13.95. C₁₃H₂₀BrN₃ requires C, 52.35; H, 6.71; N, 14.09%).

Table. ¹H and ¹³C N.m.r. data (chemical shifts, δ in p.p.m. and couplings constants, J in Hz)

Compound	1-position	3-position	4-position	5-position	1-position	C-3	C-4	C-5
(1 b)*	NH, 5.20 CH ₃ , 2.90 (<i>J</i> yucu, 5.9)	7.38 (J _{3,4} 2.1)	6.09 (J _{4.5} 2.3)	7.34 (J _{3.5} 0.9)	CH ₃ , 39.7 (¹ J 136.7)	137.2 (¹ J 185.9)	103.7 (¹ J 177.4)	127.8 (¹ J 186.0)
(2)•HBr ^{<i>b</i>}	Ad'	NH ₂ , 4.62	5.80 (J ₄ 5 3.0)	7.85	Adć	150.0	93.7 (¹ J 184.6)	134.6 (¹ J 193.4)
(3) ^{<i>a</i>}	Ad	NH ₂ , 3.30	Àd	6.97	Adʻ	150.0	116.3	122.0 (¹ J 180.6)
(4)•HBr ^b	Adć	7.92 (J _{3,4} 2.4)	6.35	NH ₂ , 3.42	Ad۲	130.5 (¹ J 190.5)	100.6 (¹ J 181.5)	139.8

^a In deuteriochloroform (CDCl₃). ^b In [²H₆]dimethyl sulphoxide. ^c Data for 1-adamantyl groups are similar to the ones described in refs. 1, 2, and 4.

has been isolated in the synthesis of C-aminopyrazoles from β -keto nitriles.^{6,7}

All known methods^{6,7} of preparation of 1-alkyl-5-aminopyrazoles yield mixtures with isomeric 3-aminopyrazoles. The rearrangement of 1-amino into 5-amino-pyrazoles is a selective way to obtain these last compounds. Other heterocycles, such as 1-aminoindazoles, are possible substrates for similar reactions.

References

- 1 M. E. Gonzalez, B. Alarcón, P. Cabildo, R. M. Claramunt, D. Sanz, and J. Elguero, *Eur. J. Med. Chem.*, 1985, 20, 359.
- 2 (a) M. Bruix, R. M. Claramunt, J. Elguero, J. de Mendoza, and C. Pascual, Spectrosc. Lett., 1984, 17, 757; (b) R. M. Claramunt, P. Cabildo, D. Sanz, and J. Elguero, Spectrosc. Int. J., 1985, 4, 109.

- 3 P. Cabildo, R. M. Claramunt, and J. Elguero, Org. Magn. Reson., 1984, 22, 603.
- 4 (a) P. Cabildo, R. M. Claramunt, D. Sanz, M. C. Foces-Foces, F. H. Cano, J. Catalán, and J. Elguero, *Tetrahedron*, 1985, 41, 473; (b) D. Sanz, R. M. Claramunt, and A. Fruchier, *An. Quim.*, 1988, 84C, 367.
- 5 H. Neunhoeffer, M. Clausen, H. D. Votter, H. Ohl, C. Kruger, and K. Angermund, *Liebigs Ann. Chem.*, 1985, 1732.
- 6 J. Elguero in 'Comprehensive Heterocyclic Chemistry' series eds A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984, vol. 5, ch. 4.04, p. 167.
- 7 G. Coispeau and J. Elguero, Bull. Soc. Chim. Fr., 1970, 2717.

Paper 9/04960F Received 27th June 1989 Accepted 20th November 1989